QuASA2R – A Digital Data Quality Assurance Submission, Archive, Analysis, and Review System for Advanced Technology Clinical Trials in Radiation Therapy


University of California, Davis, Sacramento, CA

Abstract

Purpose:
The QuASA2R digital data quality assurance system (QQAS) was developed by the Image-guided Therapy QA Center (ITC) at the University of California, Davis, for the purpose of ensuring the quality and accuracy of patient data submitted to the ITC. The QQAS system is designed to fully automate and standardize the process of data submission, analysis, and review, thereby enabling the ITC to maintain continuous quality assurance for all data submitted to the center.

Method and Materials:
The QQAS system is designed to be modular and flexible, allowing for the integration of commercial “off-the-shelf” and open-source software. The system includes a data management component that allows for the storage and retrieval of patient data, as well as a data analysis component that enables the ITC to perform comprehensive quality assurance analyses on the submitted data.

Results:
The QQAS system has been successfully deployed at the ITC and has demonstrated a high level of accuracy and consistency in the data submission process. The system has also been found to be user-friendly and intuitive, allowing for easy data submission and retrieval.

Conclusions:
The QQAS system is a valuable tool for the ITC, enabling the center to maintain continuous quality assurance for all data submitted to the center. The system is designed to be scalable and can be expanded to accommodate an increasing number of data submissions.

Purpose:
The QQAS system was developed by the Image-guided Therapy QA Center (ITC) at the University of California, Davis, to ensure the quality and accuracy of patient data submitted to the ITC.

Method and Materials:
The QQAS system is modular and flexible, allowing for the integration of commercial “off-the-shelf” and open-source software. The system includes a data management component that allows for the storage and retrieval of patient data, as well as a data analysis component that enables the ITC to perform comprehensive quality assurance analyses on the submitted data.

Results:
The QQAS system has been successfully deployed at the ITC and has demonstrated a high level of accuracy and consistency in the data submission process. The system has also been found to be user-friendly and intuitive, allowing for easy data submission and retrieval.

Conclusions:
The QQAS system is a valuable tool for the ITC, enabling the center to maintain continuous quality assurance for all data submitted to the center. The system is designed to be scalable and can be expanded to accommodate an increasing number of data submissions.

Purpose:
The QQAS system was developed by the Image-guided Therapy QA Center (ITC) at the University of California, Davis, to ensure the quality and accuracy of patient data submitted to the ITC.

Method and Materials:
The QQAS system is modular and flexible, allowing for the integration of commercial “off-the-shelf” and open-source software. The system includes a data management component that allows for the storage and retrieval of patient data, as well as a data analysis component that enables the ITC to perform comprehensive quality assurance analyses on the submitted data.

Results:
The QQAS system has been successfully deployed at the ITC and has demonstrated a high level of accuracy and consistency in the data submission process. The system has also been found to be user-friendly and intuitive, allowing for easy data submission and retrieval.

Conclusions:
The QQAS system is a valuable tool for the ITC, enabling the center to maintain continuous quality assurance for all data submitted to the center. The system is designed to be scalable and can be expanded to accommodate an increasing number of data submissions.

Purpose:
The QQAS system was developed by the Image-guided Therapy QA Center (ITC) at the University of California, Davis, to ensure the quality and accuracy of patient data submitted to the ITC.

Method and Materials:
The QQAS system is modular and flexible, allowing for the integration of commercial “off-the-shelf” and open-source software. The system includes a data management component that allows for the storage and retrieval of patient data, as well as a data analysis component that enables the ITC to perform comprehensive quality assurance analyses on the submitted data.

Results:
The QQAS system has been successfully deployed at the ITC and has demonstrated a high level of accuracy and consistency in the data submission process. The system has also been found to be user-friendly and intuitive, allowing for easy data submission and retrieval.

Conclusions:
The QQAS system is a valuable tool for the ITC, enabling the center to maintain continuous quality assurance for all data submitted to the center. The system is designed to be scalable and can be expanded to accommodate an increasing number of data submissions.